Adic Flows, Transversal Flows, and Horocycle Flows

نویسندگان

  • OMRI SARIG
  • MARTIN SCHMOLL
چکیده

We give a symbolic construction of Shunji Ito’s “transversal flow for a subshift of finite type” [I], along the lines of Vershik’s construction of an adic transformation. We then show how these flows arise naturally in the symbolic coding of horocycle flows on non-compact hyperbolic surfaces with finite area.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Theorems for Horocycle Flows

The main results of this paper are limit theorems for horocycle flows on compact surfaces of constant negative curvature. One of the main objects of the paper is a special family of horocycle-invariant finitely additive Hölder measures on rectifiable arcs. An asymptotic formula for ergodic integrals for horocycle flows is obtained in terms of the finitely-additive measures, and limit theorems f...

متن کامل

Nondivergence of Horocyclic Flows on Moduli Space

The earthquake flow and the Teichmüller horocycle flow are flows on bundles over the Riemann moduli space of a surface, and are similar in many respects to unipotent flows on homogeneous spaces of Lie groups. In analogy with results of Margulis, Dani and others in the homogeneous space setting, we prove strong nondivergence results for these flows. This extends previous work of Veech. As coroll...

متن کامل

Disjointness of Mobius from Horocycle Flows

We formulate and prove a finite version of Vinogradov’s bilinear sum inequality.We use it together with Ratner’s joinings theorems to prove that the Mobius function is disjoint from discrete horocycle flows on Γ\SL2(R).

متن کامل

Invariant Distributions and Time Averages for Horocycle Flows

There are infinitely many obstructions to the existence of smooth solutions of the cohomological equation Uu = f , where U is the vector field generating the horocycle flow on the unit tangent bundle SM of a Riemann surface M of finite area and f is a given function on SM. We study the Sobolev regularity of these obstructions, construct smooth solutions of the cohomological equation, and derive...

متن کامل

Invariant Radon Measures for Horocycle Flows on Abelian Covers

We classify the ergodic invariant Radon measures for horocycle flows on Zd–covers of compact Riemannian surfaces of negative curvature, thus proving a conjecture of M. Babillot and F. Ledrappier. An important tool is a result in the ergodic theory of equivalence relations concerning the reduction of the range of a cocycle by the addition of a coboundary.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012